The Co-Cr-Nb (Cobalt-Chromium-Niobium) System

K.P. Gupta, The Indian Institute of Metals

Introduction

Very little work has been done in the Co-Cr-Nb system. Only a part of the face-centered cubic (fcc) (α Co) solid solution phase boundary has been established at high temperature and a study of mechanical properties after aging of low Cr and low Nb containing alloys have been reported.

Binary Systems

There exist two reviewed phase diagrams for the Co-Cr system, one by [1990Gup] (based on the experimental data of [1978All] and [1961Gri]) (Fig. 1) and the other by [Massalski2] (based on the experimental data of [1978All] and thermodynamic calculations by several investigators) (Fig. 2), which are more or less the same at temperatures higher than 900 °C but show differences at lower temperatures. The Co-Cr system is a single eutectic system with a eutectic reaction L \leftrightarrow (α Co) + (Cr) at 1397 °C [1990Gup] or 1395 °C [Massalski2]. The σ phase forms from the (Cr) solid solution through a congruent transformation at 1283 °C. The (Cr) solid solution further undergoes a eutectoid transformation (Cr) \leftrightarrow (α Co) + σ at 1266 °C (Fig. 1) or ~1260 °C Fig. 2. A peritectoid reaction (α Co) + $\sigma \leftrightarrow (\epsilon$ Co) occurs at 967 °C. Thermodynamic calculations suggest a transformation involving the (α Co) and (ϵ Co) ferromagnetic and paramagnetic states (Fig. 2). In the wide (ϵ Co) phase region, [1961Gri] suggested the existence of three intermediate phases. Co₃Cr, Co₂Cr, and Co₃Cr₂ with congruent transformation temperatures of ~620, ~640, and ~625 °C, respectively (Fig. 1). [1969Sin] confirmed the existence of the Co_3Cr phase.

The Co-Nb system [Massalski2] (Fig. 3) shows three intermediate phases, Co_3Nb , Co_2Nb , and Co_6Nb_7 (μ), of which the Co_2Nb and μ phases melt congruently at 1480 and 1402 °C, respectively. The Co_3Nb phase forms through a peritectic reaction L + $Co_2Nb \leftrightarrow Co_3Nb$ at 1247 °C. Three eutectic reactions L \leftrightarrow (α Co) + Co_3Nb , L \leftrightarrow $Co_2Nb + \mu$, and L $\leftrightarrow \mu$ + (Cr) occur at 1237, 1278, and 1374 °C, respectively.

The Cr-Nb system (Fig. 4) [Massalski 2] has one intermediate phase, Cr₂Nb, with two polymorphic forms. The Cr₂Nb (H) phase melts congruently at 1770 °C, and the Cr₂Nb (L) phase exists down to room temperature. The transition temperature for the Cr₂Nb phase varies from ~1585 °C at the higher Cr content side to ~1625 °C at the higher Nb content side. The existence of the Cr₂Nb(H) phase was reported by [1961Pan1] and [1961Pan2]. [1961Pan2] in their study of the Cr-Nb-Ni system observed for the Cr₂Nb-NbNi₃ pseudobinary that the Cr₂Nb(H) phase gets stabilized at lower temperatures with the addition of Ni, the Cr₂Nb (L) phase is rather restricted, and a two-phase region, Cr₂Nb (L) + Cr₂Nb(H), exists between the two phases from the Cr₂Nb end of the pseudobinary. This led the

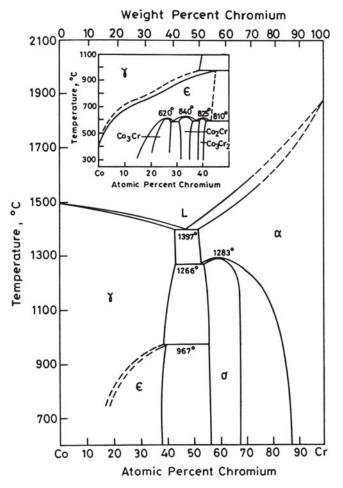


Fig. 1 The Co-Cr binary system [1990Gup, 1978All]. Insert shows the low-temperature transformations in the cph (ϵ Co) phase [1961Gri].

authors to suggest that the Cr₂Nb (H) and Cr₂Nb (L) phases are two district phases, and that the so-called polymorphic transformation line of the Cr₂Nb phase is possibly a very narrow two-phase region between the Cr₂Nb(H) and Cr₂Nb (L) phases. The probable phase equilibria involving the Cr₂Nb phases is given schematically as an insert in Fig. 4, which shows a probable peritectoid reaction Cr₂Nb (H) + (Nb) \leftrightarrow Cr₂Nb (L) at 1625 °C and a eutectoid decomposition of the Cr₂Nb (H) phase, Cr₂Nb (H) \leftrightarrow (Cr) + Cr₂Nb (L) at ~1585 °C. Two eutectic reactions, L \leftrightarrow Cr₂Nb (H) + (Cr) and L \leftrightarrow Cr₂Nb (H) + (Nb) occur at 1620 and 1650 °C, respectively.

Binary and Ternary Phases

In the three binary systems, there are nine intermediate phases. In the ternary system, the existence of a $MgZn_2$ -type

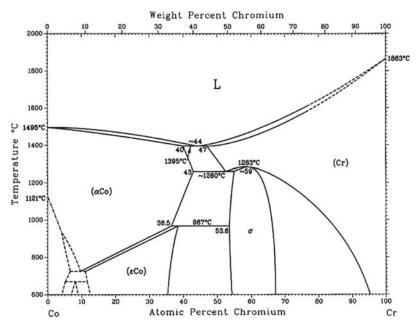


Fig. 2 The Co-Cr binary system [Massalski2]

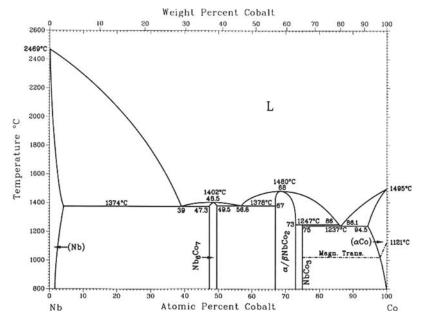


Fig. 3 The Co-Nb binary system [Massalski2]

phase at equiatomic composition has been reported, but it may not be a true ternary intermediate phase because the NbCr₂ (H) phase is a MgZn₂-type phase and the ternary phase is possibly an extension of the binary phase into the ternary. The structure data of the binary phases are given in Table 1.

Ternary System

[1962Pie] studied the aging characteristics and mechanical properties of Co alloys containing Cr, Nb, and Ni as alloying elements. Only one ternary Co alloy containing 6.5 wt.% Nb and 20.27 wt. % Cr (4.07 at. % Nb and 22.9 at.% Cr, respectively) was studied in this investigation. The alloys were induction-melted under vacuum using 99.6 mass% pure Co containing 0.37% Ni, 99.5 mass% Cr containing 0.2 mass% Fe, and 99.7 mass% Nb. Hot-swaged alloy specimens were first solution-treated in evacuated silica capsules at 1150 °C, next were water-quenched and then were aged at 850 °C for up to 1000 h, and were finally examined microscopically by x-ray diffraction (XRD) and by mechanical property studies. A precipitated phase was

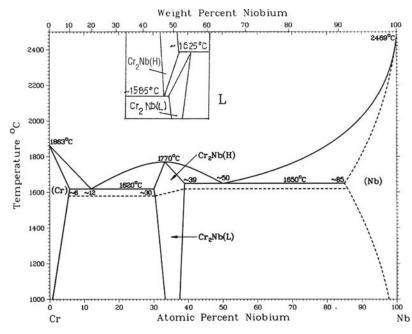
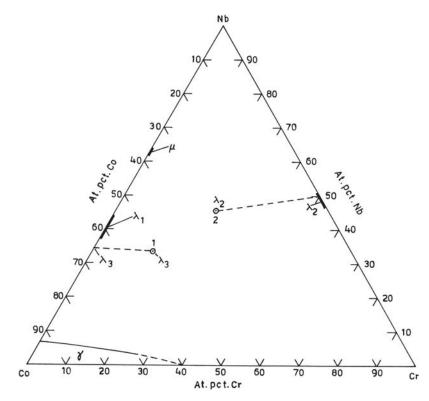



Fig. 4 The Cr-Nb binary system [Massalski2]. The insert shows the probable phase equilibria at the Cr₂Nb phase [1961Pan2].

Fig. 5 A partial isothermal section of the Co-Cr-Nb system at 1200 °C. The approximate composition of the MgNi₂-type Laves phase (point 1) precipitates in a Co-Cr-Nb alloy at 850 °C [1962Pie], and the compositions of the MgZn₂-type Laves phase (point 2) reported by [1965Gan] are also shown.

extracted from the aged specimens for chemical analysis and phase identification by XRD.

The hardness of the alloys increased on aging at 850 °C and reached a maximum hardness after 100 h. Precipitate

particles extracted from the aged specimen were found to contain 44.9 wt.% Co, 13.7 wt.% Cr, and 29.5 wt.% Nb (the total comes out to be only 88.1 wt.%) or approximately about 56 at.% Co, 20 at.% Cr, and 24 at.% Nb. Analysis of

Phase designation	Composition	Pearson symbol	Space group	Туре	Lattice parameters, nm	
					a	С
α	(Cr)	cI2	Im3m	W		
	(aCo)	cF4	Fm3m	Cu		
e	(eCo)	hP2	P63/mmc	Mg		
Nb	(Nb)	cI2	Im3m	W		
σ	Co ₇ Cr ₈	tP_3O	$P4_2/mnm$	σ (Cr, Fe)	0.8758	0.4536
ρ	Co ₃ Cr	hP8	P6 ₃ /mmc	Ni ₃ Sn	0.5028	0.4034
ν	Co ₂ Cr					
ζ	Co ₃ Cr ₂					
λ_2	$Cr_2Nb(H)$	hP12	P63/mmc	MgZn ₂	0.493	0.807
λ1	$Cr_2Nb(L)$	cF24	$Fd\overline{3}m$	Cu ₂ Mg	0.6987	
λ3	Co ₃ Nb	hP24	P6 ₃ mmc	MgNi ₂	0.67407	1.5425
λ	Co ₂ Nb	cF24	$Fd\overline{3}m$	Cu ₂ Mg	0.6758	
μ	Co ₆ Nb ₇	hR13	R3m	Fe ₇ W ₆	0.4893	2.664(a)
(a) Lattice parameter is f	for hexagonal cell with 39	9 atoms/cell.				

 Table 1
 Structure data of binary phases in the Co-Cr-Nb system

the XRD pattern of the extracted precipitate particles showed them to be isostructural with the MgNi₂-type Laves phase with lattice parameter a = 0.475 nm and c = 1.556nm. The Co-Nb system has an MgNi₂-type phase (Co₃Nb), and the above result shows that the Co₃Nb phase extends into the ternary at least up to ~14 wt.% Cr or ~20 at.% Cr.

In search of MgZn₂-type Laves phases in ternary alloys of Co and Ni containing V, Cr, Nb, Ta, or W, [1965Gan] studied the Co-Cr-Nb system. No experimental details regarding, for example, the purity of the component elements, the method of alloy melting, or the heat treatment temperature are given. The presence of an MgZn₂-type Laves phase at a Co-to-Cr-to-Nb atomic ratio of 1:1:1 (i.e., 28.9 wt.% Co, 23.5 wt.% Cr, and 45.6 wt.% Nb) was reported. Because an MgZn₂-type Laves phase exists at high temperatures in the Cr-Nb system (Cr₂Nb(H) phase), the Laves phase reported by [1965Gan] is possibly due to an extension of the high-temperature Cr₂Nb phase into the ternary system. The lattice parameter of the ternary MgZn₂ phase [1965Gan] is reported to be a = 0.4849 nm and c = 0.7907 nm, which are slightly smaller than those of the Cr₂Nb (H) phase (Table 1). Because in the Cr-Nb-Ni system [1990Gup] the Cr_2Nb (H) phase is stabilized by the addition of Ni, a similar effect may also be possible by addition of Co. It will be interesting to investigate the Co₂Nb-Cr₂Nb isopleth to see to which lower temperature the MgZn₂ phase persists.

[1965 Dra] also studied the aging behavior of Co-Cr-X alloys, in which X = Mo, Nb, Ta, or W, in the composition region of up to 25 wt.% Cr and 25 wt.% Nb. The alloys were arc-melted using 99.9 mass% Co, 99.35 mass% Cr, and 99.6 mass% Nb, homogenized in sealed silica capsules at 1200 °C for 1000 h, and water-quenched. After the solution treatment of a portion of the alloys at 1200 °C for 2 h, they were aged for 2 to 100 h at different temperatures between 1000 and 600 °C. Precipitated phases were extracted from the aged specimens for phase identification. Metallography, XRD, hardness measurement, transmission election microscopy (TEM), and electron diffraction were used for phase analysis and for study aging the behavior of the alloys.

The 1200 °C annealed alloys were used to establish the fcc (α Co) phase boundary (Fig. 5). The detailed phase analysis of all the alloys is not given by [1965Dra] to distinguish which phases are in equilibrium with the (α Co) phase at 1200 °C. The only information available from the reported data is that at 1200 °C the MgNi₂-type Laves phase exists in the investigated multiphase alloys. X-ray analysis of the alloys showed that the matrix phase contained both fcc (α Co) and hexagonal close-packed (hcp) (ϵ Co) phases, with the latter phase formed during cooling of the fcc (α Co) phase.

Hardness of the aged alloys was found to increase with an increase in Cr and Nb content for all aging temperatures. This increase in hardness has been attributed to increased volume of precipitated phase with increase in alloying element content. A more detailed investigation was carried out with an alloy containing 5 wt.% Cr and 5 wt.% Nb aged at 600 °C. At this temperature maximum hardness was produced in this alloy. TEM and electron diffraction, studies of this alloy indicated superstructure formation in the fcc (α Co) matrix with the particles lying on the (111) plane of the (α Co) phase and additional diffraction spots were observed for the hcp (ϵ Co) phase. The additional diffraction spots were identified as due to a hexagonal MgZn₂-type Laves phase. If the identification of the MgZn₂ phase is correct, it may mean that the MgZn₂ type Laves phase observed by [1965Gan] is stable down to at least 600 °C. As indicated earlier the Co₂Nb-Cr₂Nb isopleth should be investigated to throw more light on the stability of Laves phases in the Co-Cr-Nb system.

References

1961Gri: A.T. Grigorev, E. Yu. Pu, and E.M. Sokolovskaya, Solid State Transformations in the Co-Rich Region of the Chromium-Cobalt System, *Russ. J. Inorg. Chem.*, 1961, **6**, p 827-830 (Phase Equilibria, #)

[#] Indicates presence of phase diagram.

- **1961Pan1:** V.M. Pan, Polymorphic Transformation in NbCr₂, *Fiz. Met. Metalloved. Akad. Nauk SSSR*, 1961, **12**, p 455-457, in Russian (Crystal Structure)
- **1961Pan2:** V.M. Pan, Definition of Equilibrium Diagram Cr-Nb and NbCr₂-Ni₃Nb, *Dopovidi Akad. Nank. Ukr.*, 1961, (4), p 332-334, in Russian (Phase Equilibria, #)
- **1962Pie:** B.J. Piearcey, R. Jackson, and B.B. Argent, The Mechanical Properties and Structure of Cobalt-Nickel-Niobium Alloys, *J. Inst. Metals*, 1962, **91**, p 462-466 (Experimental)
- **1965Dra:** J.M. Drapier, J.L. de Brouwer, and D. Coutsouradis, Refractory Metal and Intermetallic Precipitates in Cobalt-Chromium Alloys, *Cobalt*, 1965, **27**, p. 59-72 (Experimental)
- 1965Gan: E. Ganglberger, H. Nowotny, and F. Benesovsky,

MgZn₂ Type Ternary Phases, *Monatsh. Chem.*, 1965, **96**, p 1658-1659, in German (Experimental)

- 1969Sin: A.K. Sinha, Close Packed Ordered AB₃ Structure in Binary Transition Metal Alloys, *Trans. Met. Soc. AIME*, 1969, 245, p 237-240 (Experimental)
- 1978All: C. Allibert, C. Bernard, N. Valignat, and M. Dombre, Co-Cr Binary System: Experimental Redetermination of the Phase Diagram and Comparison with the Diagram Calculated from the Thermodynamic Data, *J. Less Common Metals*, 1978, 59, p 211-228 (Phase Equilibria, #)
- **1990Gup:** K.P. Gupta, Phase Diagrams of Nickel Ternary Systems, The Indian Institute of Metals, Calcutta, 1990, p 5-17 (Review).

Co-Cr-Nb evaluation contributed by **K.P. Gupta**, The Indian Institute of Metals, Metal House, Plot 13/4, Block AQ, Sector V, Calcutta, India. Literature searched through 1996. Dr. Gupta is the Alloy Phase Diagram Co-Category Program Editor for ternary nickel alloys.